Use this URL to cite or link to this record in EThOS:
Title: Modulation of fast-spiking interneurons using two-pore channel blockers
Author: Whittaker, Maximilian Anthony Erik
ISNI:       0000 0004 7429 4267
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The balance between excitatory and inhibitory synaptic transmission within and across neurons in active networks is crucial for cortical function and may allow for rapid transitions between stable network states. GABAergic interneurons mediate the majority of inhibitory transmission in the cortex, and therefore contribute to the global balance of activity in neuronal networks. Disruption in the network balance due to impaired inhibition has been implicated in several neuropsychiatric diseases (Marin 2012). Both schizophrenia and autism are two highly heritable cognitive disorders with complex genetic aetiologies but overlapping behavioural phenotypes that share common imbalances in neuronal network activity (Gao & Penzes 2015). An increasing body of evidence suggests that functional abnormalities in a particular group of cortical GABAergic interneurons expressing the calcium-binding protein parvalbumin (PV) are involved in the pathology of these disorders (Marin 2012). As deficits in this neuronal population have been linked to these disorders it could be useful to target them and increase their activity. A conserved feature in PV cells is their unusually low input resistance compared to other neuronal populations. This feature is regulated by the expression of leak K+ channels, believed to be mediated in part by TASK and TREK subfamily two-pore K+ channels (Goldberg et al. 2011). The selective blockade of specific leak K+ channels could therefore be applied to increase the activity of PV cells. In this thesis, specific TASK-1/3 and TREK-1 channel blockers were applied in cortical mouse slices in an attempt to increase the output of PV cells. The blockade of either channel did not successfully increase the amplitude of PV cell-evoked inhibitory postsynaptic currents (IPSCs) onto principal cells. However, while the blockade of TASK-1/3 channels failed to depolarise the membrane or alter the input resistance, the blockade of TREK-1 channels resulted in a small but significant depolarisation of the membrane potential in PV cells. Interestingly, TREK-1 channel blockade also increased action potential firing of PV cells in response to given current stimuli, suggesting that TREK-1 could be a useful target for PV cell modulation. These results demonstrate for the first time the functional effects of using specific two-pore K+ channel blockers in PV cells. Furthermore, these data provide electrophysiological evidence against the functional expression of TASK-1/3 in PV cells. It could therefore be interesting to further characterise the precise subtypes of leak K+ channels responsible for their low resistivity. This would help to classify the key contributors of the background K+ conductances present in PV cells in addition to finding suitable targets to increase their activity.
Supervisor: Daw, Michael ; Shipston, Michael Sponsor: Biotechnology and Biological Sciences Research Council (BBSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: excitatory neurons ; interneurons ; excitatory activity ; inhibitory activity ; fast-spiking interneurons