Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.755939
Title: Electrohydrodynamic spraying techniques for food ingredient component nanocapsulation
Author: Eltayeb, M.
ISNI:       0000 0004 7428 8967
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Nanoparticles are being widely investigated for food purposes and are beginning to see application in food production. There are numerous techniques to produce such nanoparticles, including emulsion-based techniques and spray drying, each with their advantages. Electrohydrodynamic spraying provides an alternative technique for preparing food component loaded particles in the nano-scale with a good control of important particle characteristics, such as size. In this work, Electrohydrodynamic spraying was used to investigate its potential for producing nanoparticles intended for nanoencapsulation of low solubility food components. Different processing parameters including flow rate, solute concentration, food component loading and their influence on nanoparticle characteristics and food component release were studied using food flavour as a model food component and ethylcellulose and stearic acid as a carrier materials. This work, EHD spraying was used to investigate its potential for producing nanoparticles intended for food delivery. Different processing parameters including flow rate, solution concentration, food component loading and their effect on nanoparticle characteristics and food flavour release rate were investigated. Polymeric and lipid nanoparticles were studied in detail with respect to nanoparticle characteristics and food component release kinetics and additional studies were performed for nanoparticles prepared with ethylcellulose as a model hydrophilic polymer to form the polymeric core; and stearic acid as a model lipid to form the lipid monolayer. EHD sprayed nanooparticles were prepared with diameters between 10-100 nm and a near-monodisperse size distribution was obtained in most cases. The flavour release rates were found that the release rate was a function of both the nanoparticle size and structure, and hence of the processing conditions. EHD sprayed nanoparticles generally had a slower flavour release rate compared with conventional techniques. The results indicated that EHD spraying is an attractive nanotechnology for generating food component loaded nanoparticles that can be tailored towards an intended food delivery application. Compared with the conventional techniques it provides better control of nanoparticle and demonstrated its suitability for producing nanoparticle formulations in which the food component and is released rate in a sustained manner to potentially improve bioavailability of low solubility food component such as flavour.
Supervisor: Edirisinghe, M. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.755939  DOI: Not available
Share: