Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.755241
Title: Distributed model predictive control for reconfigurable large-scale systems
Author: Baldivieso-Monasterios, Pablo Rodolfo
ISNI:       0000 0004 7428 2397
Awarding Body: University of Sheffield
Current Institution: University of Sheffield
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Large-scale Systems are gaining more importance in the modern world requiring flexible techniques capable of handling interactions. This thesis is concerned with the development of suitable algorithms based on Model Predictive Control (MPC) that guarantee stability, recursive feasibility and constraint satisfaction. In the first part of this thesis, the main properties and control challenges for controlling an Large-Scale System are brought together, and the main distributed approaches for solving these problems are surveyed. Also, two novel Distributed MPC algorithms are presented. A non-centralised approach to the output-feedback variant of tube-based model predictive control of dynamically coupled linear time-invariant systems with shared constraints. A tube-based algorithm capable of handling the interactions–not rejecting them– that replaces the conventional linear disturbance rejection controller with a second MPC controller, as is done in tube-based nonlinear MPC. Following this, a smart-grids application of the developed algorithm is presented to solve the load frequency control for a power network. The approach achieves guaranteed constraint satisfaction, the recursive feasibility of the MPC problems and stability while maintaining on-line complexity similar to conventional MPC. The second part of the thesis covers reconfigurable distributed MPC. Two novel approaches are considered: a nominal MPC methodology that incorporates information of external disturbances, and a coalitional approach for robust distributed MPC. The first approach uses available disturbance predictions within a nominal model predictive control formulation is studied. The main challenge that arises is the loss of recursive feasibility and stability guarantees when a disturbance, which may change from time step to time step, is resent in the model and on the system. We show how standard stabilising terminal conditions may be modified to account for the use of disturbances in the prediction model. Robust stability and feasibility are established under the assumption that the disturbance change across sampling instances is limited. The proposed coalitional approach to robust Distributed MPC aims to tackle the existing trade-off between communication and performance in Large-Scale System by exploiting the different network topologies of system dynamics. The algorithm employs a method to switch between topologies using a multi-rate control approach. The optimal topology selection problem is solved using a consensus approach appropriately constrained to reduce the effects of any combinatorial explosion. The robust control algorithm is capable of recomputing the necessary parameters online to readjust to new partitions. Robust constraint satisfaction, recursive and stability are guaranteed by the proposed algorithm.
Supervisor: Trodden, Paul Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.755241  DOI: Not available
Share: