Use this URL to cite or link to this record in EThOS:
Title: Detection and attribution of carbon cycle processes from atmospheric O2 and CO2 measurements at Halley Research Station, Antarctica and Weybourne Atmospheric Observatory, U.K.
Author: Barningham, Thomas
ISNI:       0000 0004 7427 0302
Awarding Body: University of East Anglia
Current Institution: University of East Anglia
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Atmospheric oxygen (O2) measurements represent an important tool for investigating carbon cycle processes that determine the magnitude of the fluxes of carbon dioxide (CO2) to and from the atmosphere. By combining atmospheric O2 and CO2 measurements, one can derive the tracer Atmospheric Potential Oxygen, (APO = O2 +1.1CO2) which is a conservative tracer with respect to terrestrial O2 and CO2 exchange processes and therefore primarily represents ocean exchange processes. The primary aim of this research was to assess the spatial and temporal variability of atmospheric O2, CO2 and APO at two contrasting locations: The Halley Research Station, Antarctica and the Weybourne Atmospheric Observatory, U.K. The measurements collected at Halley were made possible by establishing a high precision, continuous, in situ, atmospheric O2 and CO2 measurement system at the station, which I built, tested and installed as part of this research. The aim of the new measurement system was to fill in the observational O2 gap in the South Atlantic sector of the Southern Ocean; a key region with respect to the global oceanic sink for anthropogenic CO2 emissions. At the Weybourne Atmospheric Observatory, I have extended and re-evaluated an existing atmospheric O2 and CO2 measurement record (2008-2015). The inter-annual variability of the seasonal cycles and growth rates of atmospheric O2, CO2 and APO were examined to assess the temporal variability of the carbon cycle processes that control them. The data were also compared to other O2 monitoring stations in the northern hemisphere to understand the spatial variability of the processes. Throughout this thesis, I have used a range of analysis techniques, including model-observation comparisons, to assess what drives the variability of atmospheric O2, CO2 and APO observed at these two locations.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available