Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753844
Title: The interactions of bacillithiol with carbonyl containing metabolites
Author: Rodrigues, Dominic
ISNI:       0000 0004 7426 9299
Awarding Body: University of East Anglia
Current Institution: University of East Anglia
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Bacillithiol (BSH) is a recently discovered low molecular weight (LMW) thiol found amongst several Gram-positive bacteria including Bacillus anthracis, Staphylococcus aureus and Bacillus subtilis. It plays a fundamental role in the redox processes within the cell, in addition to many other functions including the detoxification of electrophiles such as methylglyoxal (MG). MG is a reactive dicarbonyl produced as a by-product of glycolysis. It is found to be toxic to the cell as it is capable of modifying macromolecules such as proteins and DNA causing loss of biological activity. The previously established glutathione-dependent glyoxalase pathway comprises of the glyoxalase I and glyoxalase II enzyme, which are found to serve as a major mechanism for the detoxification of MG amongst eukaryotes. There is speculation that BSH follows through this same pathway. Herein, the BSH-dependent glyoxalase pathway in B. subtilis is fully explored. The studies have shown a reaction between BSH and MG to occur spontaneously both in vitro and in vivo. Furthermore, these observations, have lead onto the discovery that, for the first time, BSH has shown to react with other metabolites in glycolysis. These include dihydroxyacetone phosphate, D-glyceraldehyde 3-phosphate and pyruvate. In each case they form a hemithioacetal (HTA). As a result, potentially significant concentrations of BSH may be sequestered in these ‘unknown thiol reservoirs’ which were not previously known to exist in the cell. Essentially, this raises questions regarding the true overall concentration of intracellular BSH.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.753844  DOI: Not available
Share: