Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753791
Title: The study and replication of plant surfaces
Author: Harris, Matthew Thomas
ISNI:       0000 0004 7426 8771
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The analysis and replication of surfaces which mimic the behaviour of plants is of importance as it can have a variety of applications. These applications, such as the collection of fog for drinking water, waterproof electronics, and antibiofouling devices have the potential to improve the day to day lives of millions of people. In this thesis the surfaces of multiple plants were analysed and replicated using a variety of techniques to better understand and replicate their wetting mechanisms. Also developed were a range of new analysis and replication techniques which have many potential applications in future projects. The wetting mechanism and surface of Xanthosoma sagittifolium was investigated through the use of analytical techniques such as scanning electron microscopy and time of flight secondary ion mass spectrometry, before being replicated using a nanoimprinting process. This led to the successful production, and testing, of replicas of the leaves of Xanthosoma sagittifolium. These techniques were also employed to aid in the analysis of other plant surfaces, such as that of Eremopyrum orientale and Phyllostachys aurea, and led to the development of a new technique by which plant surfaces could be analysed using time of flight secondary ion mass spectrometry without the need for a live specimen. Also developed was a new replication method employing 3D printing to replicate the surfaces of Phyllostachys aurea. The development of these techniques should prove useful in future analysis and replication of plant surfaces, particularly in countries where resources are limited, or where the plant of interest is in an isolated location.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.753791  DOI: Not available
Share: