Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.753442
Title: Design of titania photocatalytic membranes containing fine ceramic fibres
Author: Sharif, Nashid
ISNI:       0000 0004 7426 5343
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Photocatalytic membranes have been designed using two types of fine-scale alumina fibres, namely Nano Alumina Fibre (NAF) from Metallurg Engineering, Estonia and commercially available Saffil® Alumina Fibre (SAF) produced by Saffil Limited, UK. NAF fibres have an average diameter of about 15 nm and SAF about 4 μm. Membranes were produced in various ways. The fibre network architecture within the membranes, along with their porosity, specific surface area and mechanical properties, have been examined. These NAF-SAF membranes were impregnated with titania-based sol-gel coatings, to produce photocatalytic membranes. Their mechanical properties, specific surface area and flow properties were assessed and photocatalytic potential was measured by studying rates of degradation of aqueous dye solution. Membranes with photo-active top layers were designed by sedimentation of a fibrous layer of NAF-SAF, containing titania nanoparticles on a pre-sedimented support layer. Two types of photocatalyst were used, one a commercially available anatase nanopowder and the other silver-coated anatase. The latter was produced via modification of the first. Optimisation of the nanoparticle loadings was performed via assessing their photocatalytic efficiency. Specific permeability values were obtained experimentally and by prediction from the pore architecture. A novel form of photo-active membrane was designed by direct casting of milled SAF and titania-based sol-gel into circular moulds. Effects of fibre milling time and fibre to sol-gel ratio on their performance were studied, besides mechanical properties, porosity and specific surface area. Their flow properties and photocatalytic efficiency were also examined. Due to the availability of these fibres, especially the high production rates (kg/h range) and low cost of NAF, these membranes offer potential for large scale application.
Supervisor: Clyne, T. W. Sponsor: IDB-Cambridge Commonwealth ; European and International Trust (IDB-CCEIT) ; Metallurg Engineering ; Fitzwilliam College ; Charles Wallace Bangladesh Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.753442  DOI:
Keywords: Titania ; Photocatalytic ; Membrane ; Ceramic ; Fibre
Share: