Use this URL to cite or link to this record in EThOS:
Title: Design and fabrication of a next generation regenerative neural interface
Author: Churm, James
ISNI:       0000 0004 7426 0729
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
A Spiral Peripheral Neural Interface (SPNI) is an electrode array that has been previously presented as a regenerative neural interface capable of receiving information from, and transmitting information to nerves. The SPNI has previously been proven in concept, however, when stimulating nerves in the device, the electrodes areinsufficiently isolated from each other and stimulations can trigger unwanted neural activity in neighbouring channels of the SPNI. Along with this, neural interfaces generally, suffer from chronic viability problems, due to biological rejection. These issues were addressed in this thesis, by the addition of a PDMS silicone membrane, into the structure of the SPNI. Improvements to the understanding and performance of structural, electrical and biocompatibility aspects of the SPNI are addressed, with the addition of the PDMS film, which is used to electrically seal SPNI channels whilst not hindering conductor integrity. The inclusion ofPDMS also provides a platform which may enable drug delivery. This work dramatically improves SPNI performance whilst providing routes to improved biocompatibility. This thesis addresses the main issues previously presented in the SPNI and brings the device up to a new standard which can once again be tested for its viability in vivo.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QH301 Biology ; TK Electrical engineering. Electronics Nuclear engineering