Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752482
Title: Energy-aware performance engineering in high performance computing
Author: Roberts, Stephen I.
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Advances in processor design have delivered performance improvements for decades. As physical limits are reached, however, refinements to the same basic technologies are beginning to yield diminishing returns. Unsustainable increases in energy consumption are forcing hardware manufacturers to prioritise energy efficiency in their designs. Research suggests that software modifications will be needed to exploit the resulting improvements in current and future hardware. New tools are required to capitalise on this new class of optimisation. This thesis investigates the field of energy-aware performance engineering. It begins by examining the current state of the art, which is characterised by ad-hoc techniques and a lack of standardised metrics. Work in this thesis addresses these deficiencies and lays stable foundations for others to build on. The first contribution made includes a set of criteria which define the properties that energy-aware optimisation metrics should exhibit. These criteria show that current metrics cannot meaningfully assess the utility of code or correctly guide its optimisation. New metrics are proposed to address these issues, and theoretical and empirical proofs of their advantages are given. This thesis then presents the Power Optimised Software Envelope (POSE) model, which allows developers to assess whether power optimisation is worth pursuing for their applications. POSE is used to study the optimisation characteristics of codes from the Mantevo mini-application suite running on a Haswell-based cluster. The results obtained show that of these codes TeaLeaf has the most scope for power optimisation while PathFinder has the least. Finally, POSE modelling techniques are extended to evaluate the system-wide scope for energy-aware performance optimisation. System Summary POSE allows developers to assess the scope a system has for energy-aware software optimisation independent of the code being run.
Supervisor: Not available Sponsor: Technology Strategy Board
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.752482  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software
Share: