Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752426
Title: Dataflow methods in HPC, visualisation and analysis
Author: Biddiscombe, John A.
ISNI:       0000 0004 7425 5575
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The processing power available to scientists and engineers using supercomputers over the last few decades has grown exponentially, permitting significantly more sophisticated simulations, and as a consequence, generating proportionally larger output datasets. This change has taken place in tandem with a gradual shift in the design and implementation of simulation and post-processing software, with a shift from simulation as a first step and visualisation/analysis as a second, towards in-situ on the fly methods that provide immediate visual feedback, place less strain on file-systems and reduce overall data-movement and copying. Concurrently, processor speed increases have dramatically slowed and multi and many-core architectures have instead become the norm for virtually all High Performance computing (HPC) machines. This in turn has led to a shift away from the traditional distributed one rank per node model, to one rank per process, using multiple processes per multicore node, and then back towards one rank per node again, using distributed and multi-threaded frameworks combined. This thesis consists of a series of publications that demonstrate how software design for analysis and visualisation has tracked these architectural changes and pushed the boundaries of HPC visualisation using dataflow techniques in distributed environments. The first publication shows how support for the time dimension in parallel pipelines can be implemented, demonstrating how information flow within an application can be leveraged to optimise performance and add features such as analysis of time-dependent flows and comparison of datasets at different timesteps. A method of integrating dataflow pipelines with in-situ visualisation is subsequently presented, using asynchronous coupling of user driven GUI controls and a live simulation running on a supercomputer. The loose coupling of analysis and simulation allows for reduced IO, immediate feedback and the ability to change simulation parameters on the fly. A significant drawback of parallel pipelines is the inefficiency caused by improper load-balancing, particularly during interactive analysis where the user may select between different features of interest, this problem is addressed in the fourth publication by integrating a high performance partitioning library into the visualization pipeline and extending the information flow up and down the pipeline to support it. This extension is demonstrated in the third publication (published earlier) on massive meshes with extremely high complexity and shows that general purpose visualization tools such as ParaView can be made to compete with bespoke software written for a dedicated task. The future of software running on many-core architectures will involve task-based runtimes, with dynamic load-balancing, asynchronous execution based on dataflow graphs, work stealing and concurrent data sharing between simulation and analysis. The final paper of this thesis presents an optimisation for one such runtime, in support of these future HPC applications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.752426  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software
Share: