Use this URL to cite or link to this record in EThOS:
Title: Numerical simulation of selected two-dimensional and three-dimensional fluid-structure interaction problems using OpenFOAM technology
Author: Al-Manthari, Maimouna S.
ISNI:       0000 0004 7425 5284
Awarding Body: Swansea University
Current Institution: Swansea University
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 27 Sep 2022
Access from Institution:
Fluid-structure interaction (FSI) problems are increasing in various engineering fields. In this thesis, different cases of FSI in two- and three-dimensions (2D and 3D) are simulated using OpenFOAM and foam-extend. These packages have been used to create a coupling between fluid and solid. The vortex-induced vibration (VIV) phenomenon of flow past a circular cylinder is studied using PIMPLE algorithm for pressure-velocity coupling. This VIV study is restricted to incompressible flow simulation at a Reynolds number (Re) of 100. The changes of drag and lift coefficient values depend on the study case and the spring-mass-damper system for the flow past a free oscillatory cylinder. The free vibrating cylinder examined in one-degree-of-freedom (1DOF) and two-degrees-of-freedom (2DOF) systems with linear damping and spring properties. Both will affect the behaviour of the cylinder within the flow with some noticeable differences. The response time of the cylinder and the drag coefficient are the most affected by the spring and damper. Besides the vortex-induced vibration test cases, the two-dimensional and three-dimensional fluid-structure interaction benchmarking is also studied. A partitioned solution method for strongly coupled solver with independent fluid and solid meshes for transient simulation has been applied. The fluid domain dynamics is governed by the incompressible Navier-Stokes equations; however, the structural field is described by the nonlinear elastodynamic equations. Fluid and solid domains are discretised by finite volume method (FVM) in space and time. A strong coupling scheme for partitioned analysis of the thin-walled shell structure exposed to wind-induced vibration (WIV) is presented. The achievement of the 3D membrane roof coupling scheme is studied by applying the 2D model. Additionally, numerical models for the slender shell structures coupling and the 3D flows indicate possible applications of the presented work. The computational fluid dynamics (CFD) simulation results revealed that even the flow is considered as a laminar, turbulence modelling or more refined meshes should be used to capture the generation and release of vortices. A partitioned solution procedure for FSI problems in the building aeroelasticity area is also studied. An illustrative real-world model on the coupled behaviour of membrane structure under wind flow influence is given. A four-point tent subjected to wind motion is a typical application of this work applying with various physical factors that are a necessity for the thin membrane structure. The fluid domain is described by the incompressible Navier-Stokes equations at a Reynolds number of Re = 3,750. However, the motion of the solid field is modeled by total Lagrangian strategy for nonlinear elastic deformation. The FSI simulation, particularly 3D problems require in very long calculation time. Some limitations of the FSI solver in foam-extend package called fsiFoam is discussed. All solvers that used in this thesis are considered to be applied to a wide use of the implementation of FSI models, despite some problems in parallelisation, particularly in the latest FSI solver version. The analysis results are presented to demonstrate accuracy, convergence, and stability.
Supervisor: Nithiarasu, Perumal ; Li, Chenfeng Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral