Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752239
Title: Metal/metal oxide co-impregnated lanthanum strontium calcium titanate anodes for solid oxide fuel cells
Author: Price, Robert
ISNI:       0000 0004 7425 4521
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Solid Oxide Fuel Cells (SOFC) are electrochemical energy conversion devices which allow fuel gases, e.g. hydrogen or natural gas, to be converted to electricity and heat at much high efficiencies than combustion-based energy conversion technologies. SOFC are particularly suited to employment in stationary energy conversion applications, e.g. micro-combined heat and power (μ-CHP) and base load, which are certain to play a large role in worldwide decentralisation of power distribution and supply over the coming decades. Use of high-temperature SOFC technology within these systems is also a vital requirement in order to utilise fuel gases which are readily available in different areas of the world. Unfortunately, the limiting factor to the long-term commercialisation of SOFC systems is the redox instability, coking intolerance and sulphur poisoning of the state-of-the-art Ni-based cermet composite anode material. This research explores the ‘powder to power' development of alternative SOFC anode catalyst systems by impregnation of an A-site deficient La0.20Sr0.25Ca0.45TiO3 (LSCT[sub](A-)) anode ‘backbone' microstructure with coatings of ceria-based oxide ion conductors and metallic electrocatalyst particles, in order to create a SOFC anode which exhibits high redox stability, tolerance to sulphur poisoning and low voltage degradation rates under operating conditions. A 75 weight percent (wt. %) solids loading LSCT[sub](A-) ink, exhibiting ideal properties for screen printing of thick-film SOFC anode layers, was screen printed with 325 and 230 mesh counts (per inch) screens onto electrolyte supports. Sintering of anode layers between 1250 °C and 1350 °C for 1 to 2 hours indicated that microstructures printed with the 230 mesh screen provided a higher porosity and improved grain connectivity than those printed with the 325 mesh screen. Sintering anode layers at 1350 °C for 2 hours provided an anode microstructure with an advantageous combination of lateral grain connectivity and porosity, giving rise to an ‘effective' electrical conductivity of 17.5 S cm−1 at 850 °C. Impregnation of this optimised LSCT[sub](A-) anode scaffold with 13-16 wt. % (of the anode mass) Ce0.80Gd0.20O1.90 (CGO) and either Ni (5 wt. %), Pd, Pt, Rh or Ru (2-3 wt. %) and integration into SOFC resulted in achievement of Area Specific Resistances (ASR) of as low as 0.39 Ω cm−2, using thick (160 μm) 6ScSZ electrolytes. Durability testing of SOFC with Ni/CGO, Ni/CeO2, Pt/CGO and Rh/CGO impregnated LSCT[sub](A-) anodes was subsequently carried out in industrial button cell test rigs at HEXIS AG, Winterthur, Switzerland. Both Ni/CGO and Pt/CGO cells showed unacceptable levels of degradation (14.9% and 13.4%, respectively) during a ~960 hour period of operation, including redox/thermo/thermoredox cycling treatments. Significantly, by exchanging the CGO component for the CeO2 component in the SOFC containing Ni, the degradation over the same time period was almost halved. Most importantly, galvanostatic operation of the SOFC with a Rh/CGO impregnated anode for >3000 hours (without cycling treatments) resulted in an average voltage degradation rate of < 1.9% kh−1 which, to the author's knowledge, has not previously been reported for an alternative, SrTiO3-based anode material. Finally, transfer of the Rh/CGO impregnated LSCT[sub](A-) anode to industrial short stack (5 cells) scale at HEXIS AG revealed that operation in relevant conditions, with low gas flow rates, resulted in accelerated degradation of the Rh/CGO anode. During a 1451 hour period of galvanostatic operation, with redox cycles and overload treatments, a voltage degradation of 19.2% was observed. Redox cycling was noted to briefly recover performance of the stack before rapidly degrading back to the pre-redox cycling performance, though redox cycling does not affect this anode detrimentally. Instead, a more severe, underlying degradation mechanism, most likely caused by instability and agglomeration of Rh nanoparticles under operating conditions, is responsible for this observed degradation. Furthermore, exposure of the SOFC to fuel utilisations of >100% (overloading) had little effect on the Rh/CGO co-impregnated LSCT[sub](A-) anodes, giving a direct advantage over the standard HEXIS SOFC. Finally, elevated ohmic resistances caused by imperfect contacting with the Ni-based current collector materials highlighted that a new method of current collection must be developed for use with these anode materials.
Supervisor: Irvine, John T. S. Sponsor: University of St Andrews ; HEXIS AG
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.752239  DOI: Not available
Keywords: Solid oxide fuel cell ; Strontium titanate ; Catalyst impregnation ; Durability testing ; Short stack testing ; Electrolyte-supported SOFC ; TK2933.S65P8 ; Solid oxide fuel cells--Materials ; Anodes--Materials
Share: