Title:
|
The time-domain numerical solution of Maxwell's electromagnetic equations, via the fourth order Runge-Kutta discontinuous Galerkin method
|
This thesis presents a high-order numerical method for the Time-Domain solution of Maxwell's Electromagnetic equations in both one- and two-dimensional space. The thesis discuses the validity of high-order representation and improved boundary representation. The majority of the theory is concerned with the formulation of a high-order scheme which is capable of providing a numerical solution for specific two-dimensional scattering problems. Specifics of the theory involve the selection of a suitable numerical flux, the choice of appropriate boundary conditions, mapping between coordinate systems and basis functions. The effectiveness of the method is then demonstrated through a series of examples.
|