Use this URL to cite or link to this record in EThOS:
Title: Nonequilibrium quantum field dynamics from the two-particle-irreducible effective action
Author: Laurie, Nathan S.
Awarding Body: Swansea University
Current Institution: Swansea University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The two-particle-irreducible effective action offers a powerful approach to the study of quantum field dynamics far from equilibrium. Recent and upcoming heavy ion collision experiments motivate the study of such nonequilibrium dynamics in an expanding space-time background. For the O(N) model I derive exact, causal evolution equations for the statistical and spectral functions in a longitudinally expanding system. It is followed by an investigation into how the expansion affects the prospect of the system reaching equilibrium. Results are obtained in 1+1 dimensions at next-to- leading order in loop- and 1/N-expansions of the 2PI effective action. I focus on the evolution of the statistical function from highly nonequilibrium initial conditions, presenting a detailed analysis of early, intermediate and late-time dynamics. It is found that dynamics at very early times is attracted by a nonthermal fixed point of the mean field equations, after which interactions attempt to drive the system to equilibrium. The competition between the interactions and the expansion is eventually won by the expansion, with so-called freeze-out emerging naturally in this description. In order to investigate the convergence of the 2PI-1/N expansion in the 0(N) model, I compare results obtained numerically in 1+1 dimensions at leading, next- to-leading and next-to-next-to-leading order in 1/N. Convergence with increasing N, and also with decreasing coupling are discussed. A comparison is also made in the classical statistical field theory limit, where exact numerical results are available. I focus on early-time dynamics and quasi-particle properties far from equilibrium and observe rapid effective convergence already for moderate values of 1/N or the coupling strength.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available