Use this URL to cite or link to this record in EThOS:
Title: Hardware accelerated volume texturing
Author: Miller, Christopher Michael
Awarding Body: University of Wales, Swansea
Current Institution: Swansea University
Date of Award: 2006
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The emergence of volume graphics, a sub field in computer graphics, has been evident for the last 15 years. Growing from scientific visualization problems, volume graphics has established itself as an important field in general computer graphics. However, the general graphics fraternity still favour the established surface graphics techniques. This is due to well founded and established techniques and a complete pipeline through software onto display hardware. This enables real-time applications to be constructed with ease and used by a wide range of end users due to the readily available graphics hardware adopted by many computer manufacturers. Volume graphics has traditionally been restricted to high-end systems due to the complexity involved with rendering volume datasets. Either specialised graphics hardware or powerful computers were required to generate images, many of these not in real-time. Although there have been specialised hardware solutions to the volume rendering problem, the adoption of the volume dataset as a primitive relies on end-users with commodity hardware being able to display images at interactive rates. The recent emergence of programmable consumer level graphics hardware is now allowing these platforms to compute volume rendering at interactive rates. Most of the work in this field is directed towards scientific visualisation. The work in this thesis addresses the issues in providing real-time volume graphics techniques to the general graphics community using commodity graphics hardware. Real-time texturing of volumetric data is explored as an important set of techniques in delivering volume datasets as a general graphics primitive. The main contributions of this work are; The introduction of efficient acceleration techniques; Interactive display of amorphous phenomena modelled outside an object defined in a volume dataset; Interactive procedural texture synthesis for volume data; 2D texturing techniques and extensions for volume data in real-time; A flexible surface detail mapping algorithm that removes many previous restrictions Parts of this work have been presented at the 4th International Workshop on Volume Graphics and also published in Volume Graphics 2005.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available