Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.750704
Title: Models of X-ray bright points and cancelling magnetic features
Author: Parnell, Clare Elizabeth
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 1995
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Small brightenings called x-ray bright points (Golub et al, 1974) occur in the solar corona. They are observed with the soft x-ray telescope on Skylab to be approximately 22 Mm in diameter with a brighter inner core of width 4-7 Mm although with the Normal Incidence X-ray Telescope their dimensions are observed to be typically 6 Mm x 9 Mm. By comparison with magnetograms of the photosphere it has been noticed recently that there is a high correlation between the occurrence of x-ray bright points and the mutual reduction of flux between two opposite polarity magnetic fragments. These fragments are originally unconnected magnetically, but move towards each other and simultaneously lose equal amounts of flux (cancel): they are called cancelling magnetic features (Martin et al, 1984). The observations relating to these features were reviewed by Priest et al. (1994) who suggested that they naturally evolve through three phases: the pre-interaction, interaction and cancellation phases. From this evidence qualitative pictures of the magnetic field structure for an x-ray bright point and associated cancelling magnetic feature were established. The aim of this thesis has been to build on the ideas of Priest et al. (1994) to produce a detailed theoretical model of an x-ray bright point and a cancelling magnetic feature. The magnetic field structures are estimated, and the position and lifetime of the bright point are calculated, as is the total amount of energy released during the bright point. This work is also extended to study more complex cancelling configurations representing the main basic types of cancelling magnetic feature. The results of these models determine the factors that affect the lifetime and position of a bright point and indicate which types of cancelling magnetic features are most likely to produce bright points that are long-lived, lie directly above the cancellation site and occur simultaneously with the cancellation phase. The complex structure of a bright point cannot be explained from the above two-dimensional models: thus two recently observed bright points were studied to see if the above model could be extended into three dimensions to explain the structure seen in soft x-ray images. The available observational data was used and leads to reasonable explanations for the complex shapes of both bright points. Finally, a more realistic model for the overlying field was set up involving a model of the field above a supergranule cell field with fragments of finite width. The interaction of an ephemeral region within this field was then studied and led to five different scenarios. The results obtained reaffirmed those found in the previous simpler models and suggest where bright points may appear in a cell relative to the cancelling magnetic feature and for how long the bright points might last. Predictions for the lifetimes of cancelling magnetic features are also made, indicating when the cancelling magnetic feature occurs relative to the bright point.
Supervisor: Priest, Eric Ronald Sponsor: Science and Engineering Research Council (SERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.750704  DOI: Not available
Keywords: QA927.P2 ; Wave-motion, Theory of
Share: