Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.750188
Title: A novel approach towards the stereoselective synthesis of inositols and its application in the synthesis of biologically important molecules
Author: Sayer, Lloyd
ISNI:       0000 0004 7234 4419
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Myo-inositol is ubiquitous in nature and is found at the structural core of a diverse range of biologically important derivatives, including phosphatidylinositols, inositol phosphates and mycothiol. The synthesis of myo-inositol derivatives is notoriously difficult due to the need to control both regio- and enantioselectivity. As a result, synthetic routes to derivatives of this type are often lengthy and low yielding. The first biosynthetic step in the production of all myo-inositol metabolites is the isomerisation of D-glucose 6- phosphate to L-myo-inositol 1-phosphate as mediated by L-myo-inositol 1-phosphate synthase (INO1). For the protozoan parasite Trypanosoma brucei, INO1 is essential for survival and its version of the enzyme (TbINO1) has a high turnover. This makes TbINO1 an attractive candidate for the biocatalytic production of L-myo-inositol 1- phosphate, and a potential starting point for drastically shortened syntheses of important myo-inositol derivatives. The production of L-myo-inositol 1-phosphate by TbINO1 has been optimised to achieve complete conversion in reaction conditions that facilitate product isolation. Due to problems with an in-batch process, the TbINO1 enzyme was immobilised and the process was transferred to a flow system. This has allowed for production of significant quantities of L-myo-inositol 1-phosphate with a high level of purity. L-myo-inositol 1- phosphate obtained from the flow system has been used to prepare mycothiol glycosylation acceptor, 1,2,4,5,6-penta-O-acetyl-D-myo-inositol, in a concise synthesis with a greatly improved yield over the literature.
Supervisor: Smith, Terry K. ; Florence, Gordon John Sponsor: Biotechnology and Biological Sciences Research Council (BBSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.750188  DOI: Not available
Keywords: Biocatalysis ; Inositol ; Mycothiol ; L-myo-inositol 1-phosphate synthase ; INO1 ; Enantioselective ; Flow chemistry ; Trypanosoma brucei ; L-myo-inositol 1-phosphate ; QP772.I5S2
Share: