Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.750153
Title: Decision problems in groups of homeomorphisms of Cantor space
Author: Olukoya, Feyisayo
ISNI:       0000 0004 7234 4064
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The Thompson groups $F, T$ and $V$ are important groups in geometric group theory: $T$ and $V$ being the first discovered examples of finitely presented infinite simple groups. There are many generalisations of these groups including, for $n$ and $r$ natural numbers and $1 < r < n$, the groups $F_{n}$, $T_{n,r}$ and $G_{n,r}$ ($T ≅ T_{2,1}$ and $V ≅ G_{2,1}$). Automorphisms of $F$ and $T$ were characterised in the seminal paper of Brin ([16]) and, later on, Brin and Guzman ([17]) investigate automorphisms of $T_{n, n-1}$ and $F_{n}$ for $n > 2$. However, their techniques give no information about automorphisms of $G_{n,r}$. The second chapter of this thesis is dedicated to characterising the automorphisms of $G_{n,r}$. Presenting results of the author's article [10], we show that automorphisms of $G_{n,r}$ are homeomorphisms of Cantor space induced by transducers (finite state machines) which satisfy a strong synchronizing condition. In the rest of Chapter 2 and early sections of Chapter 3 we investigate the group $\out{G_{n,r}}$ of outer automorphisms of $G_{n,r}$. Presenting results of the forthcoming article [6] of the author's, we show that there is a subgroup $\hn{n}$ of $\out{G_{n,r}}$, independent of $r$, which is isomorphic to the group of automorphisms of the one-sided shift dynamical system. Most of Chapter 3 is devoted to the order problem in $\hn{n}$ and is based on [44]. We give necessary and sufficient conditions for an element of $\hn{n}$ to have finite order, although these do not yield a decision procedure. Given an automorphism $\phi$ of a group $G$, two elements $f, g ∈ G$ are said to be $\phi$-twisted conjugate to one another if for some $h ∈ G$, $g = h−1 f (h)\phi$. This defines an equivalence relation on $G$ and $G$ is said to have the $\rfty$ property if it has infinitely many $\phi$-twisted conjugacy classes for all automorphisms $\phi ∈ \aut{G}$. In the final chapter we show, using the description of $\aut{G_{n,r}}$, that for certain automorphisms, $G_{n,r}$ has infinitely many twisted conjugacy classes. We also show that for certain $\phi ∈ \aut{G_{2,1}}$ the problem of deciding when two elements of $G_{2,1}$ are $\phi$-twisted conjugate to one another is soluble.
Supervisor: Bleak, Collin Patrick Sponsor: Carnegie Trust for the Universities of Scotland
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.750153  DOI: Not available
Keywords: Group theory ; Decision problems ; Automorphisms ; Thompson groups ; QA178.O6 ; Infinite groups
Share: