Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.750098
Title: Substituted ceria materials for applications in solid oxide fuel cells
Author: Coles-Aldridge, Alice
ISNI:       0000 0004 7234 3512
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 16 Jun 2022
Access from Institution:
Abstract:
Cerias, appropriately doped with trivalent rare earth ions in particular, can have high oxide ion conductivity and are attractive as both SOFC (solid oxide fuel cell) electrolytes and anodes. Here, four groups of candidate electrolyte materials were synthesised using a low temperature method in order to determine the effect of multiple doping on their microstructure and ionic conductivity. In an initial study, seven compositions of Ce0.8SmxGd[sub]yNd[sub]zO1.9 (where x, y and z = 0.2, 0.1, 0.0667 or 0 and x + y + z = 0.2) were synthesised and the properties of multiply-doped materials were compared with the corresponding singly-doped parent materials. The effect of co-doping with Gd and Sm was investigated in more detail by preparing and studying five compositions of Ce1−2xSmxGdxO2−x (where x = 0.125, 0.1, 0.0875, 0.075 or 0.05) and seven compositions of Ce0.825SmxGd0.175−xO1.9125 (where x = 0.175, 0.14, 0.105, 0.0875, 0.07, 0.035 or 0). The effect of additional doping with a divalent ion- Ca2+- was studied in six compositions of Ce[sub](0.825+y)Sm[sub](0.0875-y)Gd[sub](0.0875-y)Ca[sub]yO1.9125 (where y = 0, 0.00875, 0.0175, 0.02625, 0.035 or 0.04375). The materials were characterised using scanning and transmission electron microscopy, inductively coupled plasma mass spectrometry and X-ray diffraction. Crystallite sizes were determined in the powders and relative densities and grain size distributions were obtained in sintered pellets. Total, bulk and grain boundary conductivities were obtained using impedance spectroscopy and corresponding activation energies and enthalpies of ion migration and defect association were calculated. The most promising material for SOFCs operating at intermediate temperatures was found to be Ce0.825Sm0.0875Gd0.0875O1.9125 which had a total conductivity at 600 °C of 2.23 S m−1. Lastly, doped ceria materials, primarily Ce0.8Sm0.2O1.9, were employed as catalytic supports for Pd and PdO nanoparticles and these were investigated as SOFC anode materials.
Supervisor: Baker, Richard Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.750098  DOI: Not available
Keywords: Ceria ; Doping ; Ionic conductivity ; Fuel cells ; Solid oxide fuel cells ; Rare earth ; TK2933.S65C76 ; Solid oxide fuel cells--Materials ; Cerium oxides
Share: