Use this URL to cite or link to this record in EThOS:
Title: Formal methods for deriving Green-type transitional and uniform asymptotic expansions from differential equations
Author: Jorna, Siebe
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 1965
Availability of Full Text:
Access from EThOS:
Access from Institution:
In the present work, we develop and illustrate powerful, but straightforward, formal methods for deriving asymptotic expansions from differential equations. In the second chapter, the ‘inverse Frobenius method' for deriving Stokes expansions is exemplified. The main body of this thesis, however, consists of the development of the new Green-Liouville-Melin transform method, and its detailed application to modified Bessel functions, parabolic cylinder functions, Whittaker functions, Poiseuille functions, confluent hypergeometric functions, and also to periodic Mathieu functions and oblate spheroidal wave functions, all with at least one parameter large+. The wide scope of the method is evinced by the fact that treatment of the essentially eigenvalue problem posed by the two last-named cases requires no additional techniques. This method, as will be explained in detail in chapter 3, yields Green-type, transitional and uniform expansions. The transitional expansions found in this way are usually of a simpler form than those derived by alternative processes (e.g. perturbation theory). To state an example, the asymptotic expansions for the periodic Mathieu functions ce(z,h) and se(z,h) valid near |z| = 1/2π that have been obtained in earlier work contain the complicated parabolic cylinder functions (c.f. Meixner 1948, Sips 1949, Dingle and Müller 1962). By contrast, our methods yield expansions of comparable applicability, but involving only elementary functions. To demonstrate their usefulness, we have fed these expansions into a digital computer and obtained extensive tables for ce(z,h) and se(z,h) in the range 50°≤ z ≤90° . Extracts from these tables and comparisons with correct results are given in §8.71. Following the chapters on the introduction and applications of the Mellin transform technique, there is some preliminary work on a new method for determining the general term in Green-type expansions. The method is illustrated by detailed calculations for modified Bessel and parabolic cylinder functions. In the final chapter, we present certain suggestions for further work.
Supervisor: Dingle, Robert B. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA401.J7 ; Mathematical models