Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.749747
Title: The extrusion of noble metal nanoparticle catalysts for sustainable oxidation reactions
Author: Gill, Arran Michael
ISNI:       0000 0004 7234 1410
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Through employing a combination of complimentary structural, spectroscopic and high-resolution microscopy techniques, the superior properties of a [PtCl4]2- precursor to yield well-defined, isolated nanoparticles (predominantly 2-3 nm) upon microporous framework architectures, have been established. These are prepared via a one-step, in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. The catalytic activity of these materials can be intrinsically linked to the degree of nanoparticle formation. The [PtCl4]2- precursor bestows a greater propensity for nanoparticle formation across a range of activation conditions by comparison to [PdCl4]2- and [AuCl4]- precursors. This, in concert with the surrounding microporous architecture, donates superior catalytic performance for the aerobic oxidation of KA oil to cyclohexanone (precursor for adipic acid and ε-caprolactam), under continuous flow conditions. It is able to approach unrivalled yields of >90% by adapting a ‘closed-loop’ system. Detailed spectroscopic investigations into the nature of the active sites at the molecular level, coupled with high-resolution electron microscopy, reveal that the intricacies of the synthetic methodology and associated activation procedures play a vital role in regulating the locality, morphology and size of the metal nanoparticles produced. Theseinvestigations also offer insights into the potential consequences of prolonged catalytic exposure. All three (Au, Pt & Pd) nanoparticle systems demonstrate a profound influence on the activation of molecular oxygen and alkyl peroxides for a plethora of selective catalytic oxidations. Furthermore, this design strategy offers adequate scope for the creation of multi-metallic (e.g. Pd-Cu, Au-Cu & Au-Pt), multifunctional heterogeneous catalysts, in the continued quest for the activation of molecular oxygen in sustainable catalytic processes.
Supervisor: Raja, Robert Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.749747  DOI: Not available
Share: