Use this URL to cite or link to this record in EThOS:
Title: Nonlinear adaptive estimation with application to sinusoidal identification
Author: Chen, Boli
ISNI:       0000 0004 7233 0957
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Parameter estimation of a sinusoidal signal in real-time is encountered in applications in numerous areas of engineering. Parameters of interest are usually amplitude, frequency and phase wherein frequency tracking is the fundamental task in sinusoidal estimation. This thesis deals with the problem of identifying a signal that comprises n (n ≥ 1) harmonics from a measurement possibly affected by structured and unstructured disturbances. The structured perturbations are modeled as a time-polynomial so as to represent, for example, bias and drift phenomena typically present in applications, whereas the unstructured disturbances are characterized as bounded perturbation. Several approaches upon different theoretical tools are presented in this thesis, and classified into two main categories: asymptotic and non-asymptotic methodologies, depending on the qualitative characteristics of the convergence behavior over time. The first part of the thesis is devoted to the asymptotic estimators, which typically consist in a pre-filtering module for generating a number of auxiliary signals, independent of the structured perturbations. These auxiliary signals can be used either directly or indirectly to estimate—in an adaptive way—the frequency, the amplitude and the phase of the sinusoidal signals. More specifically, the direct approach is based on a simple gradient method, which ensures Input-to-State Stability of the estimation error with respect to the bounded-unstructured disturbances. The indirect method exploits a specific adaptive observer scheme equipped with a switching criterion allowing to properly address in a stable way the poor excitation scenarios. It is shown that the adaptive observer method can be applied for estimating multi-frequencies through an augmented but unified framework, which is a crucial advantage with respect to direct approaches. The estimators’ stability properties are also analyzed by Input-to-State-Stability (ISS) arguments. In the second part we present a non-asymptotic estimation methodology characterized by a distinctive feature that permits finite-time convergence of the estimates. Resorting to the Volterra integral operators with suitably designed kernels, the measured signal is processed, yielding a set of auxiliary signals, in which the influence of the unknown initial conditions is annihilated. A sliding mode-based adaptation law, fed by the aforementioned auxiliary signals, is proposed for deadbeat estimation of the frequency and amplitude, which are dealt with in a step-by-step manner. The worst case behavior of the proposed algorithm in the presence of bounded perturbation is studied by ISS tools. The practical characteristics of all estimation techniques are evaluated and compared with other existing techniques by extensive simulations and experimental trials.
Supervisor: Parisini, Thomas Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral