Title:
|
Investigation of ASPPs as regulators of pancreatic inflammation and tumorigenesis
|
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of unmet need with a 5-year survival following diagnosis of 3% with limited surgical, radiotherapy and chemotherapy treatment options. Central to PDAC tumorigenesis is acquisition of an oncogenic Kras mutation to drive acinar-to-ductal metaplasia and progression to PDAC that is potentiated by NF-kB deregulation. However, PDAC requires the additional loss of tumour suppressors such as p53, SMAD4 or p16. ASPP family members ASPP2 and iASPP regulate both p53 and NF-kB, and are classified as a tumour suppressor and oncogene respectively. However, the precise roles of ASPP2 and iASPP in pancreatic cancer are unknown. In this thesis I demonstrate that ASPP2 suppresses metastasis and iASPP suppresses the pro-inflammatory tumour microenvironment. In a mouse model of PDAC development, ASPP2-deficiency does not alter metaplasia, PanIN progression or primary PDAC onset. However, median survival due to metastasis is significantly reduced in an ASPP2-deficient PDAC model. I demonstrate ASPP2-deficient PDAC can result in increased squamous differentiation defined histologically or via increased p63 expression. I propose ASPP2 is a key suppressor ΔNp63 and the squamous PDAC subtype in vivo. Conversely, iASPP is a putative oncogene and high expression in cancer associates with poor prognosis. However, in a mouse model of PDAC, loss of iASPP accelerates PDAC onset and metastasis. I demonstrate that iASPP is a functional tumour suppressor of a pro-inflammatory phenotype in response to oncogenic Kras and pancreatitis. I propose ASPP2- and iASPP-deficient mouse models of PDAC represent in vivo the squamous and immunogenic subtypes of PDAC respectively; and are relevant tools to study mechanisms of metastasis and inflammation-driven carcinogenesis.
|