Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.748675
Title: Reality, causality, and quantum theory
Author: Allen, John-Mark
ISNI:       0000 0004 7234 1787
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Quantum theory describes our universe incredibly successfully. To our classically-inclined brains, however, it is a bizarre description that requires a reimagining of what fundamental reality, or 'ontology', could look like. This thesis examines different ontological features in light of the success of quantum theory, what it requires, and what it rules out. While these investigations are primarily foundational, they also have relevance to quantum information, quantum communication, and experiments on quantum systems. The way that quantum theory describes the state of a system is one of its most unintuitive features. It is natural, therefore, to ask whether a similarly strange description of states is required on an ontological level. This thesis proves that almost all quantum superposition states for d > 3 dimensions must be real - that is, present in the ontology in a well-defined sense. This is a strong requirement which prevents intuitive explanations of the many quantum phenomena which are based on superpositions. A new theorem is also presented showing that quantum theory is incompatible with macro-realist ontologies, where certain physical quantities must always have definite values. This improves on the Leggett-Garg argument, which also aims to prove incompatibility with macro-realism but contains loopholes. Variations on both of these results that are error-tolerant (and therefore amenable to experimentation) are presented, as well as numerous related theorems showing that the ontology of quantum states must be somewhat similar to the quantum states themselves in various specific ways. Extending these same methods to quantum communication, a simple proof is found showing that an exponential number of classical bits are required to communicate a linear number of qubits. That is, classical systems are exponentially bad at storing quantum data. Causal influences are another part of ontology where quantum theory demands a revision of our classical notions. This follows from the outcomes of Bell experiments, as rigorously shown in recent analyses. Here, the task of constructing a native quantum framework for reasoning about causal influences is tackled. This is done by first analysing the simple example of a common cause, from which a quantum version of Reichenbach's principle is identified. This quantum principle relies on an identification of quantum conditional independence which can be defined in four ways, each naturally generalising a corresponding definition for classical conditional independence. Not only does this allow one to reason about common causes in a quantum experiments, but it can also be generalised to a full framework of quantum causal models (mirroring how classical causal models generalise Reichenbach's principle). This new definition of quantum causal models is illustrated by examples and strengthened by it's foundation on a robust quantum Reichenbach's principle. An unusual, but surprisingly fruitful, setting for considering quantum ontology is found by considering time travel to the past. This provides a testbed for different ontological concepts in quantum theory and new ways to compare classical and quantum frameworks. It is especially useful for comparing computational properties. In particular, time travel introduces non-linearity to quantum theory, which brings (sometimes implicit) ontological assumptions to the fore while introducing strange new abilities. Here, a model for quantum time travel is presented which arguably has fewer objectionable features than previous attempts, while remaining similarly well-motivated. This model is discussed and compared with previous quantum models, as well as with the classical case. Together, these threads of investigation develop a better understanding of how quantum theory affects possible ontologies and how ontological prejudices influence quantum theory.
Supervisor: Barrett, Jon Sponsor: Engineering and Physical Science Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.748675  DOI: Not available
Keywords: Quantum foundations ; Quantum theory ; Quantum information ; Philosophy of Physics ; Physics ; Causality ; Ontology
Share: