Use this URL to cite or link to this record in EThOS:
Title: Hybrid gamma camera imaging : translation from bench to bedside
Author: Ng, Aik Hao
ISNI:       0000 0004 7233 4587
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
There is increasing interest in the use of small field of view (SFOV) portable gamma cameras in medical imaging. A novel hybrid optical-gamma camera (HGC) has been developed through a collaboration between the Universities of Leicester and Nottingham. This system offers high resolution gamma and optical imaging and shows potential for use at the patient bedside, or in the operating theatre. The aim of this thesis was to translate the HGC technology from in vitro laboratory studies to clinical use in human subjects. Pilot studies were undertaken with the HGC as part of this thesis. Furthermore, efforts have been made to transform the HGC technologies into a new medical device, known as Nebuleye. Initial physical evaluation of the pre-production prototype camera was carried out as part of the device developmental process, highlighting some aspects of the design that require further modification. A complete and rigorous testing scheme to assess the pre-production prototype camera has been developed and successfully implemented. The newly introduced tests enabled the system uniformity, system sensitivity, detector head shielding leakage, optical-gamma image alignment and optical image quality of the hybrid camera to be assessed objectively. This harmonised testing scheme allows characterisation and direct comparison of SFOV gamma cameras. In vitro and in vivo preclinical imaging was undertaken to examine the performance of the SFOV gamma cameras for experimental animal studies. The results of animal study have shown for the first time the feasibility and performance of these SFOV gamma cameras for imaging mice injected with a newly developed 111In labelled hybrid tracer. Further investigations are needed to improve the system resolution and prepare the camera system for combined gamma-near infrared fluorescence imaging in future. A systematic in vitro laboratory assessment method has been established to examine the imaging performance of the SFOV gamma camera in radioguided sentinel lymph node biopsy (SLNB) and radioactive seed localisation procedures for breast cancer surgery. Further preparatory work was undertaken to carry out a pilot clinical trial of the use of the pre-production prototype camera in sentinel node localisation procedures during breast cancer surgery. The clinical study protocol and routine quality control procedures have been established and are suitable for future use. Baseline data on the camera performance assessed using the routine quality control scheme have been obtained. Finally, the capabilities of the SFOV gamma camera were assessed. This has provided baseline data on user feedback and the imaging consequences on operator motion effects, as well as examining the detectability of a range of radionuclides, including 99mTc, 111In, 123I, 125I and 75Se. The first clinical results of the use of the HGC in clinical hybrid optical-gamma imaging in patients administered with 99mTc and 123I labelled radiopharmaceuticals have been reported. This clinical study has demonstrated the feasibility and capability of HGC in various clinical applications performed at the patient bedside, which included patients undergoing bone, thyroid, lacrimal drainage and lymphatic imaging as well as DaTscan studies. In conclusion, the work in this thesis has demonstrated the successful translation of an SFOV hybrid gamma camera for clinical use. This system would be ideally suited for use in the operating theatre for radioguided procedures such as sentinel node detection and tumour localisation. This system also offers potential for use with the new generation of hybrid fluorescent-radionuclide tracers currently under development.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: WN Radiology. Diagnostic imaging