Use this URL to cite or link to this record in EThOS:
Title: Properties of Banach function algebras
Author: Yang, Hongfei
ISNI:       0000 0004 7233 4130
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
This thesis is devoted to the study of various properties of Banach function algebras. We are particularly interested in the study of antisymmetric decompositions for uniform algebras and regularity of Banach function algebras. We are also interested in the study of Swiss cheese sets, essential uniform algebras and characterisations of C(X) among its subalgebras. The maximal antisymmetric decomposition for uniform algebras is a generalisation of the celebrated Stone-Weierstrass theorem and it is a powerful tool in the study of uniform algebras. However, in the literature, not much attention has been paid to the study of closed antisymmetric subsets. In Section 1.7 we give a characterisation of all the closed antisymmetric subsets for the disc algebra on the unit circle, and we use this characterisation to give a new proof of Wermer’s maximality theorem. Then in Section 4.1 we give characterisations of all the closed antisymmetric subsets for normal uniform algebras on the unit interval or the unit circle. The two types of regularity points, the R-point and the point of regularity, are important concepts in the study of regularity of Banach function algebras. In Section 3.2 we construct two examples of compact plane sets X, such that R(X) has either one R-point while having no points of regularity, or R(X) has one point of continuity while having no R-points. There are the first known examples of natural uniform algebras in the literature which show that R-points and points of continuity can be different. We then use properties of regularity points to study R(X) which is not regular while having no non-trivial Jensen measures. We also use properties of regularity points in Section 4.2 to study small exceptional sets for uniform algebras. In Chapter 2 we study Swiss cheese sets. Our approach is to regard Swiss cheese sets “abstractly”: we study the family of sequences of pairs of numbers, where the numbers represent the centre and radius of discs in the complex plane. We then give a natural topology on the space of abstract Swiss cheeses and give topological proofs of various classicalisation theorems. It is standard that the study of general uniform algebras can be reduced to the study of essential uniform algebras. In Chapter 5 we study methods to construct essential uniform algebras. In particular, we continue to study the method introduced in [26] to show that some more properties are inherited by the constructed essential uniform algebra from the original one. We note that the material in Chapter 2 is joint work with J. Feinstein and S. Morley and is published in [28, 27]. The material in Chapter 3 is joint work with J. Feinstein and is published in [32]. Section 4.2 contains joint work with J. Feinstein.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA150 Algebra ; QA299 Analysis