Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.747756
Title: On the deployment of low latency network applications over third-party in-network computing resources
Author: Tasiopoulos, A.
ISNI:       0000 0004 7232 4741
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
An increasing number of Low Latency Applications (LLAs) in the entertainment (Virtual/Augmented Reality), Internet-of-Things (IoT), and automotive domains require response times that challenge the traditional application provisioning process into distant data centres. At the same time, there is a trend in deploying In-Network Computing Resources (INCRs) closer to end users either in the form of network equipment, with capabilities of performing general-purpose computations, and/or in the form of commercial off-the-self “data centres in a box”, i.e., cloudlets, placed at different locations of Internet Service Providers (ISPs). That is, INCRs extend cloud computing at the edge and middle-tier locations of the network, providing significantly smaller response times than those achieved by the current “client-to-cloud” network model. In this thesis, we argue about the necessity of exploiting INCRs for application provisioning with the purpose of improving LLAs’ Quality of Service (QoS) by essentially deploying applications closer to end users. To this end, this thesis investigates the deployment of LLAs over INCRs under fixed, mobile, and disrupted user connectivity environments. In order to fully reap the benefits of INCRs, we develop for each connectivity scenario algorithmic frameworks that are centred around the concept of a market, where LLAs lease existing INCRs. The proposed frameworks take into account the particular characteristics of INCRs, such as their limited capacity in hosting application instances, and LLAs, by addressing the number of instances each application should deploy at each computing resource over time. Furthermore, since typically the smooth operation of network applications is supported by Network Functions, such as load balancers, firewalls etc., we consider the deployment of complementary Virtual Network Functions for backing LLAs’ provisioning over INCRs. Overall, the key goal of this thesis is the investigation of using an enhanced Internet through INCRs as the communication platform for LLAs.
Supervisor: Pavlou, G. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.747756  DOI: Not available
Share: