Use this URL to cite or link to this record in EThOS:
Title: Minimally interactive segmentation with application to human placenta in fetal MR images
Author: Wang, G.
ISNI:       0000 0004 7232 4637
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Placenta segmentation from fetal Magnetic Resonance (MR) images is important for fetal surgical planning. However, accurate segmentation results are difficult to achieve for automatic methods, due to sparse acquisition, inter-slice motion, and the widely varying position and shape of the placenta among pregnant women. Interactive methods have been widely used to get more accurate and robust results. A good interactive segmentation method should achieve high accuracy, minimize user interactions with low variability among users, and be computationally fast. Exploiting recent advances in machine learning, I explore a family of new interactive methods for placenta segmentation from fetal MR images. I investigate the combination of user interactions with learning from a single image or a large set of images. For learning from a single image, I propose novel Online Random Forests to efficiently leverage user interactions for the segmentation of 2D and 3D fetal MR images. I also investigate co-segmentation of multiple volumes of the same patient with 4D Graph Cuts. For learning from a large set of images, I first propose a deep learning-based framework that combines user interactions with Convolutional Neural Networks (CNN) based on geodesic distance transforms to achieve accurate segmentation and good interactivity. I then propose image-specific fine-tuning to make CNNs adaptive to different individual images and able to segment previously unseen objects. Experimental results show that the proposed algorithms outperform traditional interactive segmentation methods in terms of accuracy and interactivity. Therefore, they might be suitable for segmentation of the placenta in planning systems for fetal and maternal surgery, and for rapid characterization of the placenta by MR images. I also demonstrate that they can be applied to the segmentation of other organs from 2D and 3D images.
Supervisor: Ourselin, S. ; Vercauteren, T. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available