Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.747624
Title: The development and application of a simulation system for diffusion-weighted MRI
Author: Graham, Mark
ISNI:       0000 0004 7231 8851
Awarding Body: UCL (university College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Diffusion-weighted MRI (DW-MRI) is a powerful, non-invasive imaging technique that allows us to infer the structure of biological tissue. It is particularly well suited to the brain, and is used by clinicians and researchers studying its structure in health and disease. High quality data is required to accurately characterise tissue structure with DW-MRI. Obtaining such data requires the careful optimisation of the image acquisition and processing pipeline, in order to maximise image quality and minimise artefacts. This thesis extends an existing MRI simulator to create a simulation system capable of producing realistic DW-MR data, with artefacts, and applies it to improve the acquisition and processing of such data. The simulator is applied in three main ways. Firstly, a novel framework for evaluating post-processing techniques is proposed and applied to assess commonly used strategies for the correction of motion, eddy-current and susceptibility artefacts. Secondly, it is used to explore the often overlooked susceptibility-movement interaction. It is demonstrated that this adversely impacts analysis of DW-MRI data, and a simple modification to the acquisition scheme is suggested to mitigate its impact. Finally, the simulation is applied to develop a new tool to perform automatic quality control. Simulated data is used to train a classifier to detect movement artefacts in data, with performance approaching that of a classifier trained on real data whilst requiring much less manually-labelled training data. It is hoped that both the findings in this thesis and the simulation tool itself will benefit the DW-MRI community. To this end, the tool is made freely available online to aid the development and validation of methods for acquiring and processing DW-MRI data.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.747624  DOI: Not available
Share: