Use this URL to cite or link to this record in EThOS:
Title: The role of proteoglycans in the initiation of neural tube closure
Author: Nychyk, Oleksandr
ISNI:       0000 0004 7231 2177
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Neurulation is the embryonic process that gives rise to the neural tube (NT), the precursor of the brain and spinal cord. Recent work has emphasised the importance of proteoglycans in convergent extension movements and NT closure in lower vertebrates. The current study is focused on the role of proteoglycans in the initiation of NT closure in mammals, termed closure 1. In this project, the initial aim was to characterise the ‘matrisome’, or in vivo extracellular matrix (ECM) composition, during mammalian neurulation. Tissue site of mRNA expression and protein localisation of ECM components, including proteoglycans, were then investigated showing their distinct expression patterns prior to and after the onset of neural tube closure. The expression analysis raised various hypothesis that were subsequently tested, demonstrating that impaired sulfation of ECM proteoglycan chains worsens the phenotype of planar cell polarity (PCP) mutant loop tail (Vangl2Lp) predisposed to neural tube defects. Exposure of Vangl2Lp/+ embryos to chlorate, an inhibitor of glycosaminoglycan sulfation, during ex vivo whole embryo culture prevented NT closure, converting Vangl2Lp/+ to the mutant Vangl2Lp/Lp pathophenotype. The same result was obtained by exposure of Vangl2Lp/+ + embryos to chondroitinase or heparitinase. Taken together, it indicated that the PCP pathway functionally interacts with chondroitin and heparan sulfate proteoglycans during initiation of NT closure. In order to investigate the possible role of proteoglycans in mammalian convergent extension, the node of Vangl2Lp/+ embryos was labelled with DiO. The study revealed that the PCP-proteoglycan interaction is mediated independently of convergent extension. The failure of neural fold apposition and reduced Fgfr1 signalling was proposed as potential causative mechanism underlying failure of closure 1. In fish, the cilia motility is dependent on heparan sulfate chains, but this has not been studied in mammals. The present study identified a novel cellular localisation of cohesin/proteoglycan protein Smc3 and its GAG chains. Both Smc3 and CS-E are expressed in the midbody, primary and motile cilia. For the first time, this study showed the nuclear expression of CS chains in mouse embryo. The coordinated movement of Smc3 and CS-E chains during cytokinesis and ciliogenesis suggests conserved role of this protein in mouse cilia and cytokinetic apparatus.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available