Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.747431
Title: Fault-tolerant quantum computation with realistic error models
Author: Auger, J. M.
ISNI:       0000 0004 7230 6439
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
In this thesis, we consider steps towards building a useful quantum computer in the presence of realistic errors. We start by presenting a novel scheme for fault-tolerant quantum computation with Rydberg atoms. The scheme uses topological error correction codes to provide fault-tolerance and utilises electromagnetically induced transparency to perform entangling gates between qubits. We examine the benefits of this scheme compared to alternative approaches, and we investigate the errors that are likely to occur and how these can be managed. We then consider how to perform quantum computation with a surface code based quantum computer that has permanently faulty components. We study both faulty links between qubits, which prevent qubits from interacting, and faulty qubits themselves; such faults could affect a wide variety of physical implementations, including schemes that use superconducting qubits and those that use trapped ions. The approach we propose for dealing with these faulty components requires minimal modification to the quantum operations required by the surface code and should therefore be implementable by almost all current and future proposals for surface code based quantum devices. Finally, we consider how to perform fault-tolerant quantum computation with components that fail probabilistically. This section is largely motivated by quantum computation with linear optics and therefore focuses on quantum computation with cluster states. We show that these probabilistic failures can be tolerated providing the failure rate is suitably low, and we present methods for increasing error thresholds in the presence of such errors.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.747431  DOI: Not available
Share: