Use this URL to cite or link to this record in EThOS:
Title: Zinc-based thin films for transparent conducting oxide applications
Author: Potter, D.
ISNI:       0000 0004 7229 6592
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis describes the synthesis of zinc-based transparent conducting oxide (TCO) thin films, as sustainable alternatives to commercial TCOs. There are two main aims to this work. The first is the discovery of suitable TCO materials, which involves finding the optimum optoelectronic properties for applications in photovoltaic devices. The second aim is investigating the scale up of aerosol assisted chemical vapour deposition (AACVD), which is the technique used to deposit the majority of the films in this work. The films deposited in this work were characterised by X-ray diffraction (XRD) to find the crystal structures, X-ray photoelectron spectroscopy (XPS) to find the elemental compositions, scanning electron microscopy (SEM) to analyse the surface morphologies, UV/vis spectroscopy to find the optical properties, and by Hall effect measurements to find the electrical properties. Aluminium, gallium, indium, silicon, and fluorine have been examined as dopants for ZnO, in various combinations, and at different concentrations. The films were generally found to have high transparency, and electrical properties that approached those of industrial TCO materials. The merits of the films are particularly promising, when considering the relative ease through which the films were synthesised. Additionally, the effect of varying the solvent used to make up the precursor solution is investigated. The deposition of ZnSb2O6 thin films via spin coating is also discussed. This thesis also details an investigation into the scale-up of AACVD. An aerosol transport study was performed, whereby the aerosol was transported prior to deposition. It was found that a considerable amount of aerosol was condensing within the tubing, prior to reaching the reactor. Additionally, increasing the film growth rates was investigated by depositing FTO films using high concentrations in the precursor solution. Growth rates of approximately 2 μm min-1 were achieved, making the use of AACVD for commercial applications significantly more feasible.
Supervisor: Carmalt, C. ; Parkin, I. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available