Use this URL to cite or link to this record in EThOS:
Title: Digital linearization of high capacity and spectrally efficient direct detection optical transceivers
Author: Li, Zhe
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Metropolitan area networks are experiencing unprecedented traffic growth. The provision of information and entertainment supported by cloud services, broadband video and mobile technologies such as long-term evolution (LTE) and 5G are creating a rapidly increasing demand for bandwidth. Although wavelength division multiplexing (WDM) architectures have been introduced into metro transport networks to provide significant savings over single-channel systems, to cope with the ever-increasing traffic growth, it is urgently required to deploy higher data rates (100 Gb/s and beyond) for each WDM channel. In comparison to dual-polarization digital coherent transceivers, single-polarization and single photodiode-based direct-detection (DD) transceivers may be favourable for metropolitan, inter-data centre and access applications due to their use of a simple and low-cost optical hardware structure. Single sideband (SSB) quadrature amplitude modulation (QAM) subcarrier modulation (SCM) is a promising signal format to achieve high information spectral density (ISD). However, due to the nonlinear effect termed signal-signal beat interference (SSBI) caused by the square-law detection, the performance of such SSB SCM DD systems is severely degraded. Therefore, it is essential to develop effective and low-complexity linearization techniques to eliminate the SSBI penalty and improve the performance of such transceivers. Extensive studies on SSB SCM DD transceivers employing a number of novel digital linearization techniques to support high capacity (≥ 100 Gb/s per channel) and spectrally-efficient (net ISD > 2 b/s/Hz) WDM transmission covering metropolitan reach scenarios (up to 240 km) are described in detail in this thesis. Digital modulation formats that can be used in DD links and the corresponding transceiver configurations are firstly reviewed, from which the SSB SCM signalling format is identified as the most promising format to achieve high data rates and ISDs. Following this, technical details of the digital linearization approaches (iterative SSBI cancellation, single-stage linearization filter and simplified non-iterative SSBI cancellation, two-stage linearization filter, Kramers-Kronig scheme) considered in the thesis are presented. Their compensation performance in a dispersion pre-compensated (Tx-EDC) 112 Gb/s per channel 35 GHz-spaced WDM SSB 16-QAM Nyquist-SCM DD system transmitting over up to 240 km standard single-mode fibre (SSMF) is assessed. Net ISDs of up to 3.18 b/s/Hz are achieved. Moreover, we also show that, with the use of effective digital linearization techniques, further simplification of the DD transceivers can be realized by moving electronic dispersion compensation from the transmitter to the receiver without sacrificing performance. The optical ISD limit of SSB SCM DD system finally explored through experiments with higher-order modulation formats combined with effective digital linearization techniques. 168 Gb/s per channel WDM 64-QAM signals were successfully transmitted over 80 km, achieving a record net optical ISD of 4.54 b/s/Hz. Finally, areas for further research are identified.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available