Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.746943
Title: Neuropathology and cognitive dysfunction after early hypoglycaemia
Author: Pitts, Georgia Eloise Rollo
ISNI:       0000 0004 7227 4676
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Hypoglycaemia is the most common metabolic problem in neonatal medicine, occurring during the first days of life and usually resolving within the same time frame. However, some neonates and infants experience severe and recurrent episodes of hypoglycaemia, the most common aetiologies being congenital hyperinsulinism (CHI) and ketotic hypoglycaemia (KH). Children with CHI are at risk of lasting brain injury, while children with KH are considered to be protected from adverse sequelae owing to the presence of ketone bodies during hypoglycaemia. This thesis investigated the neuropsychological and neuroimaging profiles of these two patient groups in neurologically normal school-aged children. Thirty-one patients with CHI and twenty-one patients with KH participated in the study alongside a cohort of healthy controls. A comprehensive battery of neuropsychological tests revealed specific impairments in attention and motor skills in both patient groups, with additional impairments observed in children with CHI. Automated and manual measurements of subcortical volumes, as well as whole brain analyses (voxel based morphometry and tract based spatial statistics) were conducted. Compared to controls, patients with CHI have reduced volume of subcortical structures, as well as extensive white matter volume loss (accompanied by decreased intracranial volume) and reduced white matter integrity across the entire brain. Patients with KH did not significantly differ from controls on any brain measures, but the only significant difference between patient groups was in thalamic and intracranial volumes. Integrity of subcortical structures and white matter was found to be predictive of scores in memory, motor skills and attention. This study is the first to show the extent of brain abnormality as a result of CHI in neurologically normal children. Furthermore, the finding that both patient groups share a similar cognitive profile refutes the notion that children with KH are protected from adverse sequelae. The implications of these findings are discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.746943  DOI: Not available
Share: