Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.746939
Title: The evaluation and harmonisation of disparate information metamodels in support of epidemiological and public health research
Author: McMahon, Christiana
ISNI:       0000 0004 7227 3964
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
BACKGROUND: Descriptions of data, metadata, provide researchers with the contextual information they need to achieve research goals. Metadata enable data discovery, sharing and reuse, and are fundamental to managing data across the research data lifecycle. However, challenges associated with data discoverability negatively impact on the extent to which these data are known by the wider research community. This, when combined with a lack of quality assessment frameworks and limited awareness of the implications associated with poor quality metadata, are hampering the way in which epidemiological and public health research data are documented and repurposed. Furthermore, the absence of enduring metadata management models to capture consent for record linkage metadata in longitudinal studies can hinder researchers from establishing standardised descriptions of consent. AIM: To examine how metadata management models can be applied to ameliorate the use of research data within the context of epidemiological and public health research. METHODS: A combination of systematic literature reviews, online surveys and qualitative data analyses were used to investigate the current state of the art, identify current perceived challenges and inform creation and evaluation of the models. RESULTS: There are three components to this thesis: a) enhancing data discoverability; b) improving metadata quality assessment; and c) improving the capture of consent for record linkage metadata. First, three models were examined to enhance research data discoverability: data publications, linked data on the World Wide Web and development of an online public health portal. Second, a novel framework to assess epidemiological and public health metadata quality framework was created and evaluated. Third, a novel metadata management model to improve capture of consent for record linkage metadata was created and evaluated. CONCLUSIONS: Findings from these studies have contributed to a set of recommendations for change in research data management policy and practice to enhance stakeholders’ research environment.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.746939  DOI: Not available
Share: