Use this URL to cite or link to this record in EThOS:
Title: Accurate simulation of low-intensity transcranial ultrasound propagation for neurostimulation
Author: Robertson, James
ISNI:       0000 0004 7226 6457
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Neural stimulation with low-intensity ultrasound is a potentially transformative technology with applications in therapy and research. To develop, it will require ultrasound to be tightly focused on brain structures with accurate spatial targeting and fine control over the ultrasound amplitude at the target. However, the skull is an impediment to the effective focusing of ultrasound. Simulations of ultrasound propagation through acoustic property maps derived from medical images can be used to derive focusing drive signals for multi-element arrays. Focusing effectiveness is dependent on the fidelity of the numerical simulations. In combination with MRI based treatment verification, model based focusing has been used to focus high-intensity ultrasound onto the brain for ablation. This thesis presents a thorough and systematic study of the simulation parameters required to achieve effective transcranial focusing. The literature on ultrasonic neurostimulation, transcranial ultrasonic focusing, and the derivation of property maps from medical images is reviewed. The sampling criteria required to ensure numerical accuracy for the k-space pseudospectral time domain simulation scheme is established through testing of individual sources of numerical error, and convergence testing of a simulated time-reversal protocol. With numerical accuracy assured, the importance of acoustic property maps is examined through simulations to determine the sensitivity of intracranial fields to the properties of the skull layer. These results are corroborated by matching experimental measurements of ultrasound propagation through skull bone phantoms with spatially registered simulations. Finally, the impact of image related homogenisation and loss of internal bone structure is determined using simulations through co-registered clinical CT and micro-CT data of the skull.
Supervisor: Treeby, B. E. ; Cox, B. T. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available