Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.746724
Title: The development of a transcatheter mitral valve
Author: Preston-Maher, G. L.
ISNI:       0000 0004 7225 6208
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Transcatheter heart valve replacements avoid the main risks associated with conventional open heart surgery and so is the preferred replacement technique for high-risk patients with aortic stenosis. Due to technical challenges, adaptation for the mitral position is still in early stages of research. The aim of this project was to develop the novel UCL transcatheter mitral valve (TMV) based on a prior conceptual design. The UCL TMV is designed to treat mitral regurgitation (MR) and is based on the UCL transcatheter aortic valve (TAV) which is retrievable, repositionable and has enhanced anchoring and sealing. The UCL TMV leaflets, which ensure unidirectional blood flow, are novel because they mimic native mitral valve morphology by having two leaflets, being D-shaped and conical. Their optimal design criterion and two key design parameters were identified using a failure mode and effects analysis and numerical simulations were used to select a design with acceptable stress levels and maximum coaptation area. The optimal leaflets were prototyped as a surgical valve to evaluate their performance against available commercial device designs and were then incorporated in TMV prototypes, and assessed for hydrodynamic performance, both of which exceeded international standard requirements. Durability assessment of the TMV is ongoing and very encouraging; currently withstanding > 80 million cardiac cycles. In conclusion, the results presented and ongoing durability assessments for the UCL TMV indicate it could be a new and effective treatment option for severe MR in high-risk patients whom are declined surgical interventions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.746724  DOI: Not available
Share: