Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.746678
Title: Calculation of bit error rates of optical signal transmission in nano-scale silicon photonic waveguides
Author: You, Jie
ISNI:       0000 0004 7225 3111
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
In this dissertation, a comprehensive and rigorous analysis of BER performance in the single- and multi-channel silicon optical interconnects is presented. The illustrated computational algorithms and new results can furnish one with insight of how to engineer waveguide dimensions, optical nonlinearity and dispersion, in order to facilitate the design and construction of the ultra-fast and low-cost chip-level communications for next-generation high-performance computing systems. Two types of optical links have been intensively discussed in this dissertation, namely a strip single-mode silicon photonic waveguide and a silicon photonic crystal waveguide. Different types of optical input signals are considered here, including an ON-OFF keying modulated nonreturn-to-zero continuous-wave signal, a phase-shift keying modulated continuous-wave signal, and a Gaussian pulsed signal, all in presence of white noise. The output signal is detected and analyzed using direct-detection optical receivers. To model the signal propagation in the single- and multi-channel silicon photonic waveguides, we employ both rigorous theoretical models that incorporate all relevant linear and nonlinear optical effects and the mutual interaction between the free carriers and the optical field, as well as their linearized version valid in the low-noise power regime. Particularly, the second propagation model is designed only for optical continuous-wave signals. Equally important, the bit error rate (BER) of the transmitted signal is accurately and efficiently calculated by using the Karhunen-Loeve series expansion methods, with these approaches performed via the time-domain, frequency-domain, and Fourier-series expansion, separately. Based on the theoretical models proposed in this work, a system analysis engine has been constructed numerically. This engine can not only analyze the underlying physics of silicon waveguides, but also evaluate the system performance, which is extremely valuable for the configuration and optimization of the optical networks on chip.
Supervisor: Panoiu, Nicolae-Coriolan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.746678  DOI: Not available
Share: