Use this URL to cite or link to this record in EThOS:
Title: Towards a gene regulatory network for the regeneration of the adult skeleton in the brittle star Amphiura filiformis
Author: Czarkwiani, A.
ISNI:       0000 0004 7224 9438
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The recent emergence of transcriptomic data available for echinoderms opened up the possibility of using this group of animals to study the molecular aspects underlying their extreme regenerative abilities. I use the brittle star Amphiura filiformis as a model to understand the cellular and molecular aspects of skeletogenesis during adult arm regeneration. This allowed me to begin compiling essential preparatory work for studying the gene regulatory network (GRN) underlying adult regeneration of the skeleton, which can be compared with the embryonic developmental program. I first studied the anatomy and morphogenesis of the skeleton during arm regeneration in A. filiformis, and defined a staging system relevant for the early developmental events occurring in the first 8 days post-amputation. I then established methods for spatio-temporal expression analysis and pharmacological treatments to characterise genes involved in adult arm regeneration in this brittle star. 18 genes expressed in embryonic skeletogenic cells (transcription factors, signalling receptors and downstream differentiation genes) were found to be expressed in the dermal layer of early stage regenerates, where skeletal spicules first form. This showed a very similar molecular signature of larval and regenerating arm skeletogenic cells. FGF signalling perturbation using the SU5402 inhibitor interfered with skeleton formation both in embryonic development and adult regeneration of the brittle star. A large-scale comparison revealed a conservation of a cohort of genes affected by SU5402 downstream of FGF signalling between those two developmental stages. In conclusion we found morphological and molecular similarities underlying skeletogenesis during regeneration and embryonic development suggesting that the gene regulatory network driving skeletogenic cell specification and differentiation could be re-activated in adult arm regeneration.
Supervisor: Oliveri, P. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available