Title:
|
Computation and representation in decision making and emotion
|
This thesis deals with three components of an organism’s interactions with its environment: learning, decision making, and emotions. In a series of 5 studies, I detail relationships between these processes, and investigate the representation and computations whereby they are achieved. In the first experiment I show how subjective wellbeing is influenced by one’s own rewards and expectations, but also those of other people. Furthermore, I find that parameter estimates of empathy predict decision-making in a distinct test of economic generosity. In my second study, I ask how stressful experiences modulate subsequent learning, detailing a specific impairment in action-learning under stress which also manifests itself in altered pupillary responses. In the third, I use a hierarchical model of learning to show that subjective uncertainty in aversive contexts predicts several dimensions of acute stress responses. Furthermore, I find that individuals who show greater uncertainty-tuning in their stress responses are better at predicting the presence of threat. In the final pair of studies I ask how decision variables for value-based choice are represented in the brain. I describe the combination of quality and quantity into value estimates in humans, revealing a central role for the Anterior Cingulate Cortex in value integration using functional magnetic resonance imaging. I next characterize the neural code for value in non-human primate frontal cortex, using single-neuron data from collaborators. These two studies provide convergent evidence that the value code may be more diverse and non-linear than previously reported, potentially conferring the ability to incorporate uncertainty signals directly in the activity of value coding neurons.
|