Use this URL to cite or link to this record in EThOS:
Title: Multi-objective search-based mobile testing
Author: Mao, K.
ISNI:       0000 0004 7224 2658
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Despite the tremendous popularity of mobile applications, mobile testing still relies heavily on manual testing. This thesis presents mobile test automation approaches based on multi-objective search. We introduce three approaches: Sapienz (for native Android app testing), Octopuz (for hybrid/web JavaScript app testing) and Polariz (for using crowdsourcing to support search-based mobile testing). These three approaches represent the primary scientific and technical contributions of the thesis. Since crowdsourcing is, itself, an emerging research area, and less well understood than search-based software engineering, the thesis also provides the first comprehensive survey on the use of crowdsourcing in software testing (in particular) and in software engineering (more generally). This survey represents a secondary contribution. Sapienz is an approach to Android testing that uses multi-objective search-based testing to automatically explore and optimise test sequences, minimising their length, while simultaneously maximising their coverage and fault revelation. The results of empirical studies demonstrate that Sapienz significantly outperforms both the state-of-the-art technique Dynodroid and the widely-used tool, Android Monkey, on all three objectives. When applied to the top 1,000 Google Play apps, Sapienz found 558 unique, previously unknown crashes. Octopuz reuses the Sapienz multi-objective search approach for automated JavaScript testing, aiming to investigate whether it replicates the Sapienz’ success on JavaScript testing. Experimental results on 10 real-world JavaScript apps provide evidence that Octopuz significantly outperforms the state of the art (and current state of practice) in automated JavaScript testing. Polariz is an approach that combines human (crowd) intelligence with machine (computational search) intelligence for mobile testing. It uses a platform that enables crowdsourced mobile testing from any source of app, via any terminal client, and by any crowd of workers. It generates replicable test scripts based on manual test traces produced by the crowd workforce, and automatically extracts from these test traces, motif events that can be used to improve search-based mobile testing approaches such as Sapienz.
Supervisor: Harman, M. ; Capra, L. ; Jia, Y. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available