Use this URL to cite or link to this record in EThOS:
Title: X-ray imaging of failure and degradation mechanisms of lithium-ion batteries
Author: Finegan, D. P.
ISNI:       0000 0004 7231 3970
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Lithium-ion batteries are becoming increasingly energy and power dense, and are required to operate in demanding applications and under challenging conditions. Both safety and performance of lithium-ion batteries need to be improved to meet the needs of the current demand, and are inextricably linked to their microstructure and mechanical design. However, there is little understanding of the complex, multi-length scale, structural dynamics that occur inside cells during operation and failure. From the evolving particle microstructure during operation to the rapid breakdown of active materials during failure, the plethora of dynamic phenomena is not well understood. In this thesis, both ex-situ and operando X-ray imaging, and computed tomography, in combination with image-based modelling and quantification are used to characterise battery materials and components in 3D. Degradation mechanisms are investigated across multiple length-scales, from the electrode particle to the full cell architecture, and direct comparisons between materials in their fresh and failed states are made. Rapid structural evolution that occurs during operation and failure is captured using high-speed synchrotron X-ray imaging, and quantified by correlating sequential tomograms. Consistent degradation mechanisms that occur over fractions of a second are identified and are shown to contribute significantly towards uncontrolled and catastrophic failure, and previously unexplored interplay between the mechanical design of cells and their safety and performance is described. The experiments reported here assess the thermal and mechanical responses of cells to extreme operating and environmental conditions. The interaction between the dynamic architecture of active materials and the mechanical designs of commercial cells are revealed, highlighting the importance of the engineering design of commercial lithium-ion batteries and their efficacy to mitigate failure. These insights are expected to influence the future design of safer and more reliable lithium-ion batteries.
Supervisor: Shearing, P. ; Brett, D. ; Hinds, G. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available