Use this URL to cite or link to this record in EThOS:
Title: Dynamics of brain states and cortical excitability in paroxysmal neurological conditions
Author: Bauer, P. R.
ISNI:       0000 0004 7230 9322
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Epilepsy and migraine are neurological conditions that are characterised by periods of disruption of normal neuronal functioning. Aside from this paroxysmal feature, both conditions share genetic mutations and altered cortical excitability. People with epilepsy appear to be diagnosed with migraine more often than people without epilepsy and, likewise, people with migraine seem to be diagnosed with epilepsy more often than people without migraine. Changes in cortical excitability may help explain the pathophysiological link between both conditions, and could be a biomarker to monitor disease activity. In this thesis, the association between migraine and epilepsy and their relation to cortical excitability is further explored. A meta-analysis of previous population based studies provides epidemiological evidence for the co-occurrence of migraine and epilepsy. The combination of computer modelling with human electroencephalographic recordings offers insight into multi-stability of brain states in epilepsy. Results described in this thesis show that Transcranial Magnetic Stimulation can be used to measure cortical excitability, but that its use as a biomarker of disease activity in epilepsy is limited due to large interindividual variability. By combining Transcranial Magnetic Stimulation with electroencephalography, two novel variables that may contribute to cortical excitability are investigated: phase clustering, which possibly reflecting functional neuronal connectivity, and the non-linear residual of a stimulus-response curve, which may reflect brain state multi-stability. The results presented in this thesis suggest that the higher propensity to global synchronisation is not shared between epilepsy and migraine. These new variables have potential value to differentiate people with epilepsy, but not people with migraine, from normal controls.
Supervisor: Sander, J. W. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available