Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.746267
Title: Image synthesis for the attenuation correction and analysis of PET/MR data
Author: Burgos, N. F.
ISNI:       0000 0004 7230 7829
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
While magnetic resonance imaging (MRI) provides high-resolution anatomical information, positron emission tomography (PET) provides functional information. Combined PET/MR scanners are expected to offer a new range of clinical applications but efforts are still necessary to mitigate some limitations of this promising technology. One of the factors limiting the use of PET/MR scanners, especially in the case of neurology studies, is the imperfect attenuation correction, leading to a strong bias of the PET activity. Exploiting the simultaneous acquisition of both modalities, I explored a new family of methods to synthesise X-ray computed tomography (CT) images from MR images. The synthetic images are generated through a multi-atlas information propagation scheme, locally matching the MRI-derived patient's morphology to a database of MR/CT image pairs, using a local image similarity measure. The proposed algorithm provides a significant improvement in PET reconstruction accuracy when compared with the current correction, allowing an unbiased analysis of the PET images. A similar image synthesis scheme was then used to better identify abnormalities in cerebral glucose metabolism measured by [18]F-fluorodeoxyglucose (FDG) PET. This framework consists of creating a subject-specific healthy PET model based on the propagation of morphologically-matched PET images, and comparing the subject's PET image to the model via a Z-score. By accounting for inter-subject morphological differences, the proposed method reduces the variance of the normal population used for comparison in the Z-score, thus increasing the sensitivity. To demonstrate that the applicability of the proposed CT synthesis method is not limited to PET/MR attenuation correction, I redesigned the synthesis process to derive tissue attenuation properties from MR images in the head & neck and pelvic regions to facilitate MR-based radiotherapy treatment planning.
Supervisor: Ourselin, S. ; Hutton, B. F. ; Cardoso, M. J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.746267  DOI: Not available
Share: