Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.745011
Title: Evolutionary genetics of CYP2J19 in red carotenoid pigmentation
Author: Twyman, Hanlu
ISNI:       0000 0004 7231 8106
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Carotenoids are responsible for much of the bright yellow to red colours in animals and have been extensively studied as condition dependent signals in sexual selection. In addition to their function in coloration, carotenoids also play a crucial role in colour vision within certain lineages. Despite this, little is known about the genetic mechanisms underlying carotenoid based pigmentation. Recently, the gene CYP2J19 was strongly implicated in red ketocarotenoid pigmentation for coloration and colour vision within two lineages of song birds (the zebra finch and the red factor canary). Here, I extend the investigation of the function of CYP2J19 in colour vision and red coloration amongst reptiles. I suggest that the original function of CYP2J19 was in colour vision and that it has been independently co-opted for red coloration within certain red lineages. Using a combination of phylogenetic and expression analysis, I study the role of CYP2J19 as the avian ketolase involved in red ketocarotenoid generation within a clade of well-studied seed-eating passerines, the weaverbirds, and demonstrate a direct association between levels of CYP2J19 expression and red ketocarotenoid-based coloration. Next, I consider the evolution of CYP2J19 across multiple avian lineages. I find evidence for positive selection acting on the gene coding sequence despite its conserved function in colour vision. This finding, though surprising, appears to be common across avian CYP loci in general. Finally, by considering the genomic organisation of CYP2J19 in the zebra finch, I find that the gene underwent a duplication event near the base of the estrildid lineage, which was followed by significant gene conversion post-duplication. Overall, the findings provide strong support for the role of CYP2J19 in red ketocarotenoid pigmentation and demonstrate how an understanding of evolutionary genetics benefit the study of the evolution of adaptive phenotypes.
Supervisor: Mundy, Nicholas Sponsor: BBSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.745011  DOI:
Keywords: Ketocarotenoids ; CYP2J19 ; Avian Coloration
Share: