Use this URL to cite or link to this record in EThOS:
Title: How TCR signal strength controls CTL polarisation for target killing
Author: Frazer, Gordon Lee
ISNI:       0000 0004 7231 5394
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Cytotoxic T lymphocytes (CTL) are major effector cells in the adaptive immune response against intracellular pathogens and cancers, killing targets with high precision. Precision is achieved through the specificity of the clonally expressed T cell receptor (TCR). TCRs recognise a specific peptide chain loaded into a major-histocompatability complex, triggering signalling, inducing the CTL to attach and kill target cells. Key stages in this attack are the initial conjugation followed by polarisation and docking of the centrosome to the junction of the two cells, the immune synapse (IS). This focuses secretion of the cytolytic components, perforin and granzyme, from modified lysosomes to kill the target cell. My PhD has utilised amino acid substitutions in the target peptide to alter its signal strength and shown this alters the subsequent killing efficiency of a target population. I developed new imaging and analysis techniques to investigate the effect of TCR signal strength at each step of the killing process. I show the first step, conjugation, is reduced for a percentage of cells with dwell times decreasing as TCR signal strength decreased. The next key step of centrosome polarisation and docking at the IS was also impaired for an increasing proportion of cells as TCR signalling reduced. Impaired centrosome docking reduced efficient granule recruitment to the IS, necessary for target killing. Centrosome docking was linked with the TCR-induced intracellular calcium flux, the duration of which increases with the strength of TCR signalling. This demonstrates how the process of CTL killing can be fine-tuned by the quality of antigen.
Supervisor: Griffiths, Gillian Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Cytotoxic T lymphocyte ; Immune Synapse ; Image Analysis ; Altered Peptide Ligands