Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744833
Title: Prosthecobacter BtubAB form bacterial mini microtubules
Author: Deng, Xian
ISNI:       0000 0004 7229 7229
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The tubulin/FtsZ superfamily contains a large set of proteins that spans through all kingdoms of life, with αβ-tubulins being the eukaryotic representatives and FtsZ being the best studied prokaryotic homologue. It is believed that all tubulin/FtsZ-related proteins have evolved from a common ancestor, however, members from this superfamily have diverged in many aspects. αβ-tubulins polymerise into giant and hollow microtubules in the presence of GTP. Despite the size of around 25 nm wide, microtubules display sophisticated dynamics. In particular, dynamic instability, the stochastic change between fast growth and rapid shrinkage, is a hallmark of microtubules. In contrast to αβ-tubulins, FtsZ lacks the C-terminal domain of tubulins and it probably functions as single homopolymeric protofilaments, possibly through treadmilling dynamics. There is strong divergence of the biological functions in the tubulin/FtsZ superfamily. Microtubules are involved in fundamental processes such as motility, transport and chromosomal segregation, whereas FtsZ is involved in bacterial cytokinesis (bacterial cell division), and the equivalent role of FtsZ is carried out by actin-based and ESCRTIII-based systems in eukaryotes. It seems that there is a big evolutionary gap between αβ-tubulins and FtsZ, and the only properties that are conserved within the tubulin/FtsZ superfamily are fold, protofilament formation and GTPase activity. In 2002, a pair of tubulin-like genes, btuba and btubb were identified in Prosthecobacter bacteria, with higher sequence homology to eukaryotic tubulins than FtsZ or any other bacterial homologues. The crystal structures solved later revealed, again, a closer similarity to αβ-tubulins than to their prokaryotic equivalents. It has been known for a while that BtubAB form filaments in the presence of GTP, however, little knowledge has been available regarding the filament architecture. In this project, I determined the near atomic resolution structure of the in vitro BtubAB filament using cryoEM and cryoET, revealing a hollow tube that consists of four protofilaments. A closer look showed that BtubAB filaments have many conserved microtubule features including: an overall polarity, similar longitudinal contacts, M-loops in lateral interfaces, and the presence of the seam, a structural hallmark of microtubules. My study also shows that BtubC, a protein with a TPR fold, binds to the BtubAB filaments in a stoichiometric manner, similar to some MAPs on microtubules. Based on this work, I concluded that BtubAB from Prosthecobacter form bacterial ‘mini microtubules’, and my work provided interesting insight into the evolution of tubulin/FtsZ-related proteins.
Supervisor: Löwe, Jan Sponsor: Boehringer Ingelheim Fonds
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.744833  DOI:
Keywords: cryoEM ; microtubule ; dynamic instability ; bacterial cytoskeleton ; BtubAB
Share: