Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744801
Title: Application of robust nonlinear model predictive control to simulating the control behaviour of a racing driver
Author: Braghieri, Giovanni
ISNI:       0000 0004 7229 2970
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The work undertaken in this research aims to develop a mathematical model which can replicate the behaviour of a racing driver controlling a vehicle at its handling limit. Most of the models proposed in the literature assume a perfect driver. A formulation taking human limitations into account would serve as a design and simulation tool for the automotive sector. A nonlinear vehicle model with five degrees of freedom under the action of external disturbances controlled by a Linear Quadratic Regulator (LQR) is first proposed to assess the validity of state variances as stability metrics. Comparison to existing stability and controllability criteria indicates that this novel metric can provide meaningful insights into vehicle performance. The LQR however, fails to stabilise the vehicle as tyres saturate. The formulation is extended to improve its robustness. Full nonlinear optimisation with direct transcription is used to derive a controller that can stabilise a vehicle at the handling limit under the action of disturbances. The careful choice of discretisation method and track description allow for reduced computing times. The performance of the controller is assessed using two vehicle configurations, Understeered and Oversteered, in scenarios characterised by increasing levels of non- linearity and geometrical complexity. All tests confirm that vehicles can be stabilised at the handling limit. Parameter studies are also carried out to reveal key aspects of the driving strategy. The driver model is validated against Driver In The Loop simulations for simple and complex manoeuvres. The analysis of experimental data led to the proposal of a novel driving strategy. Driver randomness is modelled as an external disturbance in the driver Neuromuscular System. The statistics of states and controls are found to be in good agreement. The prediction capabilities of the controller can be considered satisfactory.
Supervisor: Cole, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.744801  DOI:
Keywords: driver modelling ; vehicle dynamics ; MPC control
Share: