Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744628
Title: Formal verification-driven parallelisation synthesis
Author: Botinčan, Matko
ISNI:       0000 0004 7227 7033
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Jan 2400
Access from Institution:
Abstract:
Concurrency is often an optimisation, rather than intrinsic to the functional behaviour of a program, i.e., a concurrent program is often intended to achieve the same effect of a simpler sequential counterpart, just faster. Error-free concurrent programming remains a tricky problem, beyond the capabilities of most programmers. Consequently, an attractive alternative to manually developing a concurrent program is to automatically synthesise one. This dissertation presents two novel formal verification-based methods for safely transforming a sequential program into a concurrent one. The first method---an instance of proof-directed synthesis---takes as the input a sequential program and its safety proof, as well as annotations on where to parallelise, and produces a correctly-synchronised parallelised program, along with a proof of that program. The method uses the sequential proof to guide the insertion of synchronisation barriers to ensure that the parallelised program has the same behaviour as the original sequential version. The sequential proof, written in separation logic, need only represent shape properties, meaning we can parallelise complex heap-manipulating programs without verifying every aspect of their behaviour. The second method proposes specification-directed synthesis: given a sequential program, we extract a rich, stateful specification compactly summarising program behaviour, and use that specification for parallelisation. At the heart of the method is a learning algorithm which combines dynamic and static analysis. In particular, dynamic symbolic execution and the computational learning technique grammar induction are used to conjecture input-output specifications, and counterexample-guided abstraction refinement to confirm or refute the equivalence between the conjectured specification and the original program. Once equivalence checking succeeds, from the inferred specifications we synthesise code that executes speculatively in parallel---enabling automated parallelisation of irregular loops that are not necessary polyhedral, disjoint or with a static pipeline structure.
Supervisor: Gordon, Michael J. C. Sponsor: Gates Cambridge Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.744628  DOI:
Keywords: Programming languages ; Verification ; Parallelisation
Share: