Use this URL to cite or link to this record in EThOS: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744617 |
![]() |
|||||||
Title: | Diffusion of light adsorbates on transition metal surfaces | ||||||
Author: | Townsend, Peter Stephen Morris |
ORCID:
0000-0003-1616-4037
ISNI:
0000 0004 7227 5679
|
|||||
Awarding Body: | University of Cambridge | ||||||
Current Institution: | University of Cambridge | ||||||
Date of Award: | 2018 | ||||||
Availability of Full Text: |
|
||||||
Abstract: | |||||||
Helium-3 surface spin echo spectroscopy (HeSE) has been used to measure the diffusive dynamics of adsorbates on close-packed metal surfaces, namely hydrogen on Cu(111), Pd(111) and Ru(0001), carbon and oxygen on Ru(0001), and oxygen on Cu(111). Chapter 2 reviews the HeSE technique and describes the relevant dynamical models and statistical methods used to interpret data in later chapters. The performance of the ionizing detector is analysed, with a focus on the signal-to-noise ratio. In Chapter 3 expressions for the classical intermediate scattering function (ISF) are introduced for open and closed systems. The effects of corrugation and surface-perpendicular motion on the amplitude of different components in the ISF are modelled analytically and compared with simulation. The exact ISF for a particle on a flat surface, obeying the Generalized Langevin Equation with exponential memory friction, is calculated analytically. In Chapter 4 the analytical ISF is calculated for quantum Brownian motion and for coherent tunneling dynamics in a tight binding system. The bounce method for calculating quantum mechanical hopping rates in dissipative systems is applied to model diffusion of hydrogen on Ru(0001). Chapter 5 presents the first HeSE measurements of carbon and oxygen diffusion. C/Ru(0001) diffusion is assigned to a small carbon cluster. The jump rate has an activation energy $E_{A}=292\pm7\,$meV in the temperature range $550\,\textrm{K}\leq T \leq 1300\,$K. Oxygen diffusion is significantly slower. By comparison of literature data with the new HeSE results, the activation energy for oxygen diffusion at low coverage is estimated as $650\pm10$meV. Oxygen measurements at high coverage $\theta\approx0.22\,$ML are consistent with strong mutual O-O interactions. Surface diffusion is also observed after exposing Cu(111) to oxygen. Chapter 6 presents low-coverage measurements of protium (H) and deuterium (D) diffusion on Ru(0001), Pd(111) and Cu(111). In the quantum activated regime there is evidence for multiple jumps in all three systems, suggesting a low dynamical friction. The measurements on Ru(0001) indicate that the deep tunneling rate is much slower for D than for H.
|
|||||||
Supervisor: | Ellis, John | Sponsor: | EPSRC | ||||
Qualification Name: | Thesis (Ph.D.) | Qualification Level: | Doctoral | ||||
EThOS ID: | uk.bl.ethos.744617 | DOI: | |||||
Keywords: | helium-3 surface spin echo spectroscopy ; intermediate scattering function ; Generalized Langevin Equation ; Quantum Langevin Equation ; quantum diffusion ; surface diffusion ; incoherent tunneling | ||||||
Share: |